
The Catapult High-Level Synthesis (HLS)
Platform empowers designers to use
industry-standard C++ and/or SystemC
to describe functional intent, enabling
them to move up to a more productive
abstraction level for both design and
verification of ASICs and FPGAs. For
designs and IP where time-to-market is
critical, power/performance information
is needed early and specifications are
frequently changing (Automotive
Vision, Image Processing, Deep
Learning, Video CODEC, 5G/IoT

Communications, etc.), Catapult HLS
provides the only effective way to meet
these pressures without compromising
quality and functionality.

To achieve the maximum productivity
gain from a C++/SystemC HLS
methodology, it is necessary to have
the performance and capacity to handle
today’s large designs coupled with a
comprehensive flow through
verification and implementation.
Catapult has been proven in production
design flows with 1,000s of designs and
the resulting RTL adheres to the strictest
corporate design guidelines and ECO
flows. In addition to Catapult Synthesis,
only Catapult has integrated High-Level
Verification (HLV) tools and
methodologies that enable designers to
complete their verification signoff at
the C++ level with fast closure for RTL.

siemens.com/eda

Benefits
• Easier to design functionality

in standard C++/SystemC

 - Create C++/SystemC synthesizable
and executable specification

 - Write 80% less code for easier
development and debug

• Complete platform for power,
performance, area optimization

 - 10X productivity over hand-
coded RTL with equivalent QoR

 - Explore microarchitecture
alternatives

 - Deep-Sequential analysis with
PowerPro “under-the-hood”

• Reduces verification cost by 80%

 - Simulate functionality 100-500x
faster than RTL

 - Catapult Design Checker to find
bugs fast before synthesis

 - Catapult Coverage for HLS-aware
coverage metrics

 - Automatic generation of RTL-to-C
verification environment

 - Fast path to automated RTL
coverage closure

Catapult High-Level
Synthesis and Verification

Siemens Digital Industries Software
Design Platform Empowering Designers

Catapult
High-Level Synthesis

Platform

HLS
Verification

Low-Power
HLS

C++/SystemC
HLS

Physical Aware
HLS

Catapult High-Level Synthesis Platform

https://eda.sw.siemens.com

Po
w

er

Arch2 ArchN Arch1

A
re

a

Latency

C++/SystemC

Arch#N Arch#1 Arch#2

Catapult
High-Level Synthesis

Catapult High-Level Synthesis
HIGH-LEVEL SYNTHESIS

Benefits continued
• Easy to use HLS debug and visualization

 - Design Analyzer for visualization
of the HLS transformation process

 - Design Advisor detects the worst
coding style mistakes

• Production proven flows with
thousands of designs

 - Full support for datapath
and control logic synthesis

 - “Physically Aware“ synthesis

 - Tight integration to RTL synthesis
with “on-the-fly“ characterization
for better QoR

 - Capacity for multi-million gate ASIC
and FPGA designs

 - Top-down and bottom-up design
management

 - Complete ECO flow

• Formally proves the functional
correctness of RTL against C++ models

• Supports C++ to Catapult-generated RTL

• Find difficult to detect bugs without
writing complex testbenches

• Formally verifies designs despite
language & abstraction differences

• Does not require mapping flip- flops or
intermediate state-points before
starting verification

• Ensures hardware intent remains
consistent during system-level model
refinement

Catapult enables faster and easier
design in C++/SystemC
Using Catapult HLS simplifies the
traditional design flow by automating
the RTL generation based on a higher
level functional description and
architectural constraints. Designing
using C++/SystemC, compared to RTL,
requires up to 80% fewer lines of code,
making HLS code significantly easier to
write and debug. Incorporating last
minute specification changes and even
retargeting to a different technology is
possible because of the separation of
the design functionality and the
implementation details. The RTL can
simply be regenerated based on the
modified HLS model and new
constraints.

Catapult supports multiple
abstractions for faster simulation
and modeling
With Catapult, the designer can choose
from an RTL-like coding style in SystemC
to a fully untimed high-performance
model in C++/SystemC, or a
combination of both. During the
synthesis process, Catapult transforms
the designer’s algorithmic/behavioral
description and applies micro-
architectural constraints through user-
specified directives. Catapult’s patented
interface synthesis technology allows
timing, protocol, and bandwidth to be
defined, adding the necessary RTL

hardware during the C++ synthesis
process. SystemC designs use the
MatchLib Connections interface library
which contains pre-built protocols from
simple data/rdy/vld protocols up to
complex AXI4 memory masters and
slaves. Catapult allows the designer to
specify parallelism, design throughput,
and memory vs. register
implementation using tool options
instead of hardcoding them in the RTL.
This results in an easy to reuse design
and an optimized implementation.

Catapult is a complete platform
for power, performance, area
optimization
Catapult automatically applies general
performance and power optimizations
during design transformation. In
addition, Catapult is the industry’s first
HLS tool that targets power as an
optimization goal and uses PowerPro®
“under-the-hood” for power analysis
and to apply advanced power
optimizations. This provides a fast and
accurate flow for tradeoffs of power,
performance, and area. The generated
RTL is able to match or surpass the
quality of results (QoR) of hand-coded
RTL.

Catapult provides easier debug and
optimization control
Catapult provides built-in graphical
analysis tools, such as a Gantt Chart
Viewer and the Design Analyzer tool, to
enable full visibility of the HLS results
and to allow the designer to exert
control over design decisions. The
integrated cross-probing support
between different analysis views,
including the C++/SystemC source code,
enables the designer to rapidly focus on
the problematic areas, to add or change
directives, and to converge interactively
on the optimal solution. Design
Analyzer enables easier and deeper
debugging where designers are able to
utilize advanced source code
navigation, control flow analysis tools,
and focussed debug capabilities such as
failed schedule analysis and automatic
identification of coding style mistakes.

siemens.com/eda

Catapult transforms the designer’s algorithmic/behavioral description
and applies micro-architectural constraints through user- specified directives.

http://eda.sw.siemens.com

Catapult High-Level Synthesis
HIGH-LEVEL SYNTHESIS

Catapult Physical for better QoR
below 10nm
“Physically aware” with tight integration
to RTL synthesis. Optimizations take
advantage of more accurate
characterization data leading to shorter
pipeline stages and fewer registers.
Logic is more evenly distributed in each
pipeline stage allowing for more
aggressive resource sharing.

Catapult is proven in 1,000’s of
projects to reduce complete project
time by 50%
Catapult was released in 2004 as a C++
based ASIC synthesis tool for datapath
dominated wireless communication
hardware. Since 2004, Catapult has
grown into a C++/SystemC synthesis
tool that supports virtually any FPGA or
ASIC digital hardware design type.
Catapult has been proven on numerous
production projects to cut the overall
design time in half.

Catapult has been used on thousands of
projects, and Catapult generated
hardware can be found in hundreds of
millions of cell phones, tablets, cars,
computers, printers, cameras, gaming
consoles, and satellites. Due to this
extensive customer experience,
Catapult has been optimized to work
with existing RTL linting, coverage
closure, synthesis and ECO flows. An
example is illustrated in the whitepaper
with Qualcomm, which demonstrates
how Catapult and HLS works within very
strict corporate RTL verification,
synthesis and ECO flows.

Catapult is proven to easily adapt to
last minute design changes
One of the biggest advantages of using
HLS is the ability to quickly reuse or
modify existing design functionality,
something that is not possible to
achieve in a traditional RTL design flow.
Because the specifics of the timing,
registers, datapath, etc are not
contained in the source but specified
during the HLS synthesis process, big
changes in specification can be both
implemented and verified while still

staying on schedule. In a recent
whitepaper from NVIDIA, they describe
2 changes that they were able to
implement within months of RTL freeze
that would have been impossible using
a traditional RTL flow.

Catapult is proven for large designs
Catapult designs are often very large
and complex subsystems. For example,
Google used Catapult to synthesize
their VP9 and AV1 video encoder and
decoder, a complex, 8 million gate
design with over 150 leaf blocks with
an even mix of both datapath and
control logic. To achieve this level of
complex hardware Catapult has both
top-down and bottom-up hierarchical
design management capabilities.
Designers can focus on the blocks they
are working on while locking down
other regions of the design, allowing an
efficient design flow.

Time
HLS C++

Full Regression

2 weeks
14 CPUs

Resources

Traditional RTL
Full Regression

3 months

1000 CPUs

Time

Resources

 BigE is fully designed with an HLS flow.

siemens.com/eda

NVIDIA describes 2 changes that they were able
to implement within months of RTL freeze

https://www.webmproject.org/hardware/vp9/bige/
http://eda.sw.siemens.com

UVM

Catapult HLS

RTL

UCDB

Catapult
Coverage

Catapult
Design Checker

Portable Stimulus
Generation

HLS C++
Source

C-RTL
Compare

HIGH-LEVEL
VERIFICATION

Catapult High-Level Verification

HLS Verification (HLV)
The benefits for verification in an HLS
design flow are numerous. HLS
synthesizable C++/SystemC code is one
fifth the number of lines of code
compared to RTL which makes it easier
to write and debug. The simulation
speed is typically between 30-500X
faster than RTL allowing much more
verification and consuming far less
compute resources. An HLS design flow
also enables the verification team to be
involved very early in the design process
before any RTL is ready. All of this
translates to enormous productivity
gains when moving to an HLS/HLV
design flow resulting in significant
reductions in verification time and
costs.

Catapult Design Checker to catch
bugs early
C++ simulation often misses critical
bugs such as Uninitialized Memory
Reads, Out-of-bound array-accesses,
and overflow/underflow problems,
which can lead to hard-to-debug
failures during both C++ and RTL
verification. Furthermore C++/SystemC
language has gray areas that may give
unexpected simulation or synthesis
results depending on what platform
they execute on. The advantages of the
Catapult Design Checker, because it
uses formal technology at its core, is
that bugs can be both found early in the
design cycle and automatically, without
a test bench, thus saving valuable
debug time later in the design cycle.

Catapult Coverage to provide quality
coverage metrics
As with RTL, HLS designers need a way
to have metrics on the quality of the
testing of their design. Catapult
Coverage is HLS aware coverage for
C++/SystemC that understands concepts
such as function inlining and loop
unrolling to provide a complete
coverage picture (statement, branch,
FEC and toggle) for the design. Catapult
Coverage also writes its coverage data
to the UCDB (Unified Coverage
Database) that provides the user with a
complete set of post-processing tools
for merging, ranking, reporting and
connecting to a testplan. Using Catapult
Coverage on the HLS source enables
achieving the equivalent coverage
metrics automatically on the resulting
RTL and closing RTL coverage.

Catapult Automatic C++ to RTL
co-verification
Catapult provides an automated
verification flow (SCVerify) that verifies
the synthesized RTL against the original
C++/SystemC design. This flow auto-
generates a SystemC test infrastructure
that reuses the original C++/SystemC
testbench to verify the RTL, providing
designers with a push-button unit test
solution to quickly sanity-check the RTL
so it can then be handed off to the
downstream RTL integration and
verification teams. For users of the
UVM, Catapult also provides an
automated verification flow that
generates a complete UVM
environment.

Catapult High-Level Verification and Synthesis

siemens.com/eda

http://eda.sw.siemens.com

© 2021 Siemens. A list of relevant Siemens trademarks can
be found here. Other trademarks belong to their respective
owners.

82981-C1 12/20 C

Siemens Digital Industries Software
siemens.com/eda

Americas +1 314 264 8499
Europe +44 (0) 1276 413200
Asia-Pacific +852 2230 3333

Catapult High-Level Verification
HIGH-LEVEL
VERIFICATION

Formal equivalency checking
When designers use HLS to move their
untimed C++ design to an RTL
implementation, they may wonder if
the timed RTL is exactly functionally
equivalent to the original, high-level
description.

Dynamic directed test verification
provides good confidence that the RTL
functions as expected vs the source
C++. Whether external testbench, or
SCVerify, the methodology for
functional verification provides good
confidence in functional correctness
Catapult Formal verifies that Catapult
C++ and RTL have functional
equivalency without requiring
simulation.

Mismatches are formally proven and
flagged with counter-examples.

Formal stall checking
As part of a growing suite of HLS-centric
formal apps, Catapult Formal provides
formal stall proof to determine whether
a design block can stall and therefore
benefit from external clock gating.

C++ to RTL Formal Verification with Catapult Formal

https://www.plm.automation.siemens.com/global/en/legal/trademarks.html
http://eda.sw.siemens.com

